a2 United States Patent

Dewey et al.

US009300677B2

US 9,300,677 B2
Mar. 29, 2016

(10) Patent No.:
(45) Date of Patent:

(54)
(735)

(73)

")
@
(22)

(65)

(1)

(52)

(58)

(56)

7,512,981 B2 *
2006/0282897 Al

DATA SECURITY SYSTEM

Inventors: David B. Dewey, Alpharetta, GA (US);
Darrell O. Swope, Norcross, GA (US)

Assignee: International Business Machines
Corporation, Armonk, NY (US)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 1132 days.

Appl. No.: 12/903,495

Filed: Oct. 13, 2010

Prior Publication Data

US 2012/0096536 Al Apr. 19, 2012

Int. CL.
HO4L 29/00
HO4L 29/06
GO6F 21/57
U.S. CL
CPC HO04L 63/123 (2013.01); GO6F 21/577
(2013.01); HO4L 63/0227 (2013.01)
Field of Classification Search
USPC e 726/11, 23
See application file for complete search history.

(2006.01)
(2006.01)
(2013.01)

References Cited
U.S. PATENT DOCUMENTS

3/2009 Pearson ..o 726/23
12/2006 Sima et al.

104~

—

SERVER

106 -

SERVER

2007/0016960 Al
2008/0256612 Al
2009/0100518 Al

OTHER PUBLICATIONS

1/2007 Glaser et al.
10/2008 Roy et al.
4/2009 Overcash

Lin et al., “An Automatic Meta-revised Mechanism for Anti-mali-
cious Injection”, NBis 2007, LNCS 4658, pp. 98-107, 2007,
Springer-Verlag Berlin Heidelberg 2007.

Higgins, “Kaminsky Issues Developer Tool to Kill Injection Bugs,”
UBM TechWeb, Jun. 4, 2010, 4 pages. Accessed Aug. 17, 2010,
http://www.darkreading.com/database__security/security/app-secu-
rity/showArticle jhtml?articleID=225700088.

* cited by examiner

Primary Examiner — Brandon Hoffman
Assistant Examiner — Michael D Anderson

(74) Attorney, Agent, or Firm — Yee & Associates, P.C.; Lisa
Ulrich

(57) ABSTRACT

A method, computer system, and computer program product
for validating data contained in a request sent by a requestor
to a server application. A computer receives the request from
the requestor before receipt of the request by the server appli-
cation. The computer identifies a set of data validation rules to
apply to the data in the request based on a data format speci-
fication contained in the request sent by the requestor. The
computer determines whether the data is valid based on the
identified set of data validation rules. The computer forwards
the request to the server application in response to the com-
puter determining that the data is valid based on the identified
set of data validation rules.

20 Claims, 7 Drawing Sheets

110

CLIENT

112
CLIENT

14
CLIENT

U.S. Patent Mar. 29, 2016 Sheet 1 of 7 US 9,300,677 B2

100

CLIENT

I

SERVER
NETWORK \
_
CLIENT
106"
SERVER

CLIENT

U.S. Patent Mar. 29, 2016 Sheet 2 of 7 US 9,300,677 B2

’2/00
DATA PROCESSING SYSTEM
216 206 STORAGE DEVICES 208
20\4 AN /
PERSISTENT
MEMORY STORAGE
PROCESSOR UNIT
§ % ﬁ ﬁ
< >
210 212 @ 214
\ / /
COMMUNICATIONS INPUT/QUTPUT
UNIT UNIT DISPLAY
FIG. 2 < ﬁ
COMPUTER PROGRAM
PRODUCT
COMPUTER READABLE MEDIA
PROGRAM CODE
(224
218 /
COMPUTER READABLE
STORAGE MEDIA
~ N\ 222
220

U.S. Patent Mar. 29, 2016 Sheet 3 of 7 US 9,300,677 B2

FIG. 3 300

INTRUSION 304
PROTECTION ENVIRONMENT /

CLIENT DATA
PROCESSING 302
SYSTEM S

312
BROWSER
/

wespAage 310

306 £
\ FORM

308
USER DATA [

A

Y
A 4

v
REQUEST

DATA FORMAT
SPECIFICATION [™-332

%

Y

NETWORK 314

A\

Y 320 Y
316 SERVER INTRUSION 326
\ COMPUTER PROTECTION DEVICE /
SERVER APPLICATION DATA INSPECTION PROGRAM
WEB SERVER SET OF DATA
APPLICATION < > VALIDATION RULES
% YN
322 328

318 324

330

RULE DATABASE

U.S. Patent Mar. 29, 2016 Sheet 4 of 7 US 9,300,677 B2
FIG. 4 ﬂ’o
INTRUSION PROTECTION ENVIRONMENT ;02
SERVER COMPUTER
40§ HYPERTEXT | 410
N PROTOCOL DAEMON
40\4 l— REQUEST | T
| 418 | 417
CLIENT | \ | REQUEST HANDLER)
DATA;'?SOT%EMSS'NG | [pata || DATA INSPECTION
| L, PROGRAM RULE
BROWSER 7 16 DATABASE
/ 414 /)
406 SET OF DATA
VALIDATION RULES | [T\ 412
SERVER APPLICATION |_401
600
60\3 FIG 6 6(<- '/ ?/06
NAMES TYPES RULES
608 THE VALUE MUST BE A DATE
™_|_date_mmiddiyy DATE HAVING THE FORMAT
"MM/DD/YY" TO BE VALID
date_reservation DATE FOR A RESERVATION THE VALUE MUST BE A DATE
THE VALUE MUST BE A
Int_10_count Nggg@gﬂ‘,ﬁﬁ? NUMERIC INTEGER HAVING A
LENGTH OF 10 BYTES OR LESS
THE VALUE MUST CONTAIN
HTMLsafe_text TEXT CONTENT THAT IS HTML SAFE
THE VALUE MAY BE FREE-FORM
undef_entrytext FREE-FORM TEXT TEXT (LE. BLOG ENTRY)
BOOLEAN VALUE FOR A
bool_priorvisits | RESPONSE TO WHETHER A 5 gng\@l“T’SUN'EUg; EE\L’;E
USER HAS HAD PRIOR VISITS

U.S. Patent

Mar. 29, 2016 Sheet 5 of 7

"
418
REQUEST /
DATA
500~ METHOD
UNIVERSAL

RESOURCE IDENTIFIER

502~ 508~ APPLICATION
CODE

PARAMETER

5061 VALUE

A
Y

512 - TYPE

504 "

5101 NAME

514 - METADATA

FIG. 5

US 9,300,677 B2

U.S. Patent Mar. 29, 2016 Sheet 6 of 7

700 RECEIVE A REQUEST FROM A
™ BROWSER PRIOR TO RECEIPT OF THE
REQUEST BY A SERVER APPLICATION

y
IDENTIFY A SET OF DATA VALIDATION
702 ~| RULES TO APPLY TO THE DATA BASED
ON A DATA FORMAT SPECIFICATION
CONTAINED IN THE REQUEST

IS

THE DATA VALID YES

US 9,300,677 B2

BASED ON THE SET OF DATA
VALIDATION RULES

Y

BLOCK THE DATA FROM
706" BEING FORWARDED TO THE
SERVER APPLICATION

FORWARD THE DATA
TO THE SERVER
APPLICATION

~-708

\A

C END)
FIG. 7

U.S. Patent Mar. 29, 2016 Sheet 7 of 7 US 9,300,677 B2

800 ~_ RECEIVE A REQUEST
CONTAINING DATA
802 ~ SEND THE REQUEST TO
A REQUEST HANDLER
804 ~_ USE A DATA INSPECTION

PROGRAM TO INSPECT THE DATA

\ J
USE THE NAME OF THE PARAMETER
TO IDENTIFY A SET OF DATA
806 ~"| VALIDATION RULES TO BE APPLIED
TO THE VALUE FOR THE PARAMETER

IS THE VALUE
FOR THE PARAMETER IN
THE DATA VALID?

YES

Y

BLOCK THE DATA FROM FORWARD THE REQUEST
809 BEING FORWARDED TO THE WITH THE DATATO THE ~-812
SERVER APPLICATION SERVER APPLICATION
810~ GENERATE AN ALERT

\

C END)
FIG. 8

US 9,300,677 B2

1
DATA SECURITY SYSTEM

BACKGROUND

1. Field

The present invention relates generally to security for a
server application, and more particularly, to a technique to
validate a request for the server application.

2. Description of the Related Art

The Internet is a set of computer networks that are joined
together by components, such as gateways, to handle the
transfer and conversion of messages from the protocol that is
used by the sending network to the protocol used by the
receiving network. The Internet carries information and is
used to provide services. The information and services
include, for example, without limitation, electronic mail,
online chat services, file transfers, web pages, and other
resources.

The Internet is commonly used as a source of information
and entertainment. Further, the Internet is also used as a
medium for business activities. Many businesses, govern-
ment entities, and other organizations have a presence on the
Internet using websites to perform various transactions.

Many businesses, government entities, and other organiza-
tions have a presence on the internet using websites to per-
form various transactions. Organizations may offer goods and
services. These goods and services may involve a sale of
goods that is to be shipped to a customer. The goods also may
be software and/or data purchased by a customer and trans-
ferred over the Internet to the customer.

In performing transactions and looking for information,
customers and other users utilize programs, such as browsers,
to interact with websites. For example, a user at a computer
may enter information into a form on a webpage displayed by
the browser on the computer. The user may then submit the
information to an application. This application is a server
application and, more specifically, may be referred to as aweb
server application.

With the transfer of information from users to server appli-
cations, security is a concern. One concern is the confidenti-
ality of information being transterred from the browser to the
server application. Encryption and other mechanisms are cur-
rently used to provide this type of security.

An example of another type of security concern is vulner-
abilities of the web server application. Vulnerabilities of web
server applications are a large class of vulnerabilities that
occur on a regular basis. Many of the vulnerabilities in web
server applications result from an improper validation of data
sent to the web server applications.

For example, currently available web server applications
often do not perform validation of data passed to them by a
client. For example, the data may not give the correct type and
length. When these situations occur, the server application
attempts to handle the data, even though the data is of the
wrong type or length. As a result, vulnerabilities may occur
with this type of situation.

SUMMARY

The different illustrative embodiments provide a method,
computer system, and a computer program product for vali-
dating data contained in a request sent by a requestor to a
server application. A computer receives the request from the
requestor before receipt of the request by the server applica-
tion. The computer identifies a set of data validation rules to
apply to the data in the request based on a data format speci-
fication contained in the request sent by the requestor. The

20

30

40

45

55

2

computer determines whether the data is valid based on the
identified set of data validation rules. The computer forwards
the request to the server application in response to the com-
puter determining that the data is valid based on the identified
set of data validation rules.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG.1is an illustration of a data processing environment in
which illustrative embodiments may be implemented;

FIG. 2 is an illustration of a data processing system in
accordance with an illustrative embodiment;

FIG. 3 is an illustration of an intrusion protection environ-
ment in accordance with an illustrative embodiment;

FIG. 4 is an illustration of another implementation for an
intrusion protection environment in accordance with an illus-
trative embodiment;

FIG. 5 is an illustration of a request with data in accordance
with an illustrative embodiment;

FIG. 6 is an illustration of a table of names for a parameter
and corresponding types of values for the parameter in accor-
dance with an illustrative embodiment;

FIG. 7 is an illustration of a flowchart of a process for
processing data sent from a requestor in accordance with an
illustrative embodiment; and

FIG. 8 is an illustration of a flowchart of a process for
processing data in a request in accordance with an illustrative
embodiment.

DETAILED DESCRIPTION

As will be appreciated by one skilled in the art, the present
invention may be embodied as a system, method, or computer
program product. Accordingly, the present invention may
take the form of an entirely hardware embodiment, an entirely
software embodiment (including firmware, resident software,
micro-code, etc.), or an embodiment combining software and
hardware aspects that may all generally be referred to herein
as a “circuit,” “module,” or “system.” Furthermore, the
present invention may take the form of a computer program
product comprising computer readable program code stored
on a computer-readable tangible storage device.

Any combination of one or more computer readable
device(s) may be utilized. The computer-readable tangible
storage device may be, for example, an electronic, magnetic,
optical, electromagnetic, infrared, or semiconductor system,
apparatus, or device. More specific examples (a non-exhaus-
tive list) of the computer readable storage device would
include the following: a portable computer diskette, a hard
disk, a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a portable compact disk read-
only memory (CDROM), an optical storage device, or a mag-
netic storage device.

The computer program can be stored on a fixed or portable
computer readable storage media or downloaded from the
Internet via a network in which the network includes electri-
cal, optical and/or wireless communication links, routers,
switches, etc.

Computer program code for carrying out operations of the
present invention may be written in any combination of one or
more programming languages, including an object-oriented
programming language, such as Java, Smalltalk, C++, or the
like, and conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages. The program code may run entirely on the

US 9,300,677 B2

3

user’s computer, partly on the user’s computer, as a stand-
alone software package, partly on the user’s computer and
partly on a remote computer, or entirely on the remote com-
puter or server. In the latter scenario, the remote computer
may be connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide area
network (WAN), or the connection may be made to an exter-
nal computer (for example, through the Internet using an
Internet Service Provider).

The present invention is described below with reference to
flowcharts and/or block diagrams of methods, apparatus (sys-
tems), and computer program products according to embodi-
ments of the invention. It will be understood that each block
of'the flowcharts and/or block diagrams, and combinations of
blocks in the flowcharts and/or block diagrams, can be imple-
mented by computer program instructions.

These computer program instructions may be provided to a
processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
via a computer readable RAM such that the instructions,
which execute via the processor of the computer or other
programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks. These computer pro-
gram instructions may also be stored in a computer readable
storage medium that can direct a computer or other program-
mable data processing apparatus, viaa RAM, to function in a
particular manner, such that the instructions stored in the
computer readable medium produce an article of manufacture
including instruction means which implement the function/
act specified in the flowchart and/or block diagram block or
blocks.

The computer program instructions may also be loaded and
installed onto a computer or other programmable data pro-
cessing apparatus to cause a series of operational steps to be
performed on the computer or other programmable apparatus
to produce a computer implemented process such that the
instructions which run on the computer or other program-
mable apparatus provide processes for implementing the
functions/acts specified in the flowchart and/or block diagram
block or blocks.

With reference now to the figures and, in particular, with
reference to FIG. 1, an illustration of a data processing envi-
ronment is provided in which illustrative embodiments may
be implemented. It should be appreciated that FIG. 1 is only
provided as an illustration of one implementation and is not
intended to imply any limitation with regard to the environ-
ments in which different embodiments may be implemented.
Many modifications to the depicted environments may be
made.

FIG. 1 is an illustration of a network of data processing
systems in which illustrative embodiments may be imple-
mented. Network data processing system 100 is a network of
computers in which the illustrative embodiments may be
implemented. Network data processing system 100 contains
network 102, which provides communications links between
various devices and computers connected together within
network data processing system 100. Network 102 may
include connections, such as wire, wireless communication
links, or fiber optic cables.

In the depicted example, server computer 104 and server
computer 106 connect to network 102 along with storage unit
108. In addition, client computers 110, 112, and 114 connect
to network 102. Client computers 110, 112, and 114 may be,
for example, personal computers or network computers. In
the depicted example, server computer 104 provides infor-
mation, such as boot files, operating system images, and

40

45

50

60

4

applications to client computers 110, 112, and 114. Client
computers 110, 112, and 114 are clients to server computer
104 in this example. Network data processing system 100
may include additional server computers, client computers,
data processing systems, and other devices not shown.

Program code located in network data processing system
100 may be stored on a computer recordable storage device
and downloaded to a data processing system or other device
for use. For example, program code may be stored on a
computer recordable storage device on server computer 104
and downloaded to client computer 110 over network 102 for
use on client computer 110. One or more illustrative embodi-
ments may be implemented to manage copies of data on
network data processing system 100. In particular, one or
more illustrative embodiments may be implemented to
reduce the number of copies of data in a manner that reduces
time needed to process requests for the data.

In the depicted example, network data processing system
100 is the Internet with network 102 representing a world-
wide collection of networks and gateways that use the Trans-
mission Control Protocol/Internet Protocol (TCP/IP) suite of
protocols to communicate with one another. At the heart of
the Internet is a backbone of high-speed data communication
lines between major nodes or host computers, consisting of
thousands of commercial, governmental, educational, and
other computer systems that route data and messages. Of
course, network data processing system 100 also may be
implemented as a number of different types of networks, such
as, for example, an intranet, a cloud, a local area network
(LAN), or a wide area network (WAN). FIG. 1 is intended as
an example and not as an architectural limitation for the
different illustrative embodiments.

Turning now to FIG. 2, an illustration of a data processing
system is depicted in accordance with an illustrative embodi-
ment. In this illustrative example, data processing system 200
includes communications fabric 202, which provides com-
munications between processor unit 204, memory 206, per-
sistent storage 208, communications unit 210, input/output
(I/0) unit 212, and display 214.

Processor unit 204 serves to execute instructions for soft-
ware that may be loaded into memory 206. Processor unit 204
may be a number of processors, a central processing unit
(CPU), a multi-processor core, or some other type of proces-
sor, depending on the particular implementation. A number,
as used herein with reference to an item, means one or more
items. Further, processor unit 204 may be implemented using
a number of heterogeneous processor systems in which a
main processor is present with secondary processors on a
single chip. As another illustrative example, processor unit
204 may be a symmetric multi-processor system containing
multiple processors of the same type.

Memory 206 and persistent storage 208 are examples of
storage devices 216. A storage device is any piece of hard-
ware, such as disk storage, that is capable of storing informa-
tion, such as, for example, without limitation, data, program
code in functional form, and/or other suitable information
either on a temporary basis and/or a permanent basis. Storage
devices 216 may also be referred to as computer readable
storage devices in these examples. Memory 206, in these
examples, may be, for example, a random access memory or
any other suitable volatile or non-volatile storage device.
Persistent storage 208 may take various forms, depending on
the particular implementation.

For example, persistent storage 208 may contain one or
more components or devices. For example, persistent storage
208 may be a hard drive, a flash memory, a rewritable optical
disk, a rewritable magnetic tape, or some combination of the

US 9,300,677 B2

5

above. The media used by persistent storage 208 also may be
removable. For example, a removable hard drive may be used
for persistent storage 208.

Communications unit 210, in these examples, provides for
communications with other data processing systems or
devices. In these examples, communications unit 210 is a
network interface card. Communications unit 210 may pro-
vide communications through the use of either or both physi-
cal and wireless communications links.

Input/output unit 212 allows for input and output of data
with other devices that may be connected to data processing
system 200. For example, input/output unit 212 may provide
a connection for user input through a keyboard, a mouse,
and/or some other suitable input device. Further, input/output
unit 212 may send output to a printer. Display 214 provides a
mechanism to display information to a user.

Instructions for the operating system, applications, and/or
programs may be located in storage devices 216, which are in
communication with processor unit 204 through communi-
cations fabric 202. In these illustrative examples, the instruc-
tions are in a functional form on persistent storage 208. These
instructions may be loaded into memory 206 for running by
processor unit 204. The processes of the different embodi-
ments may be performed by processor unit 204 using com-
puter implemented instructions, which may be located in a
memory, such as memory 206.

These instructions are referred to as program code, com-
puter usable program code, or computer readable program
code that may be read and run by a processor in processor unit
204. The program code in the different embodiments may be
embodied on different physical or computer readable storage
media, such as memory 206 or persistent storage 208.

Program code 218 is located in a functional form on com-
puter readable media 220 that is selectively removable and
may be loaded onto or transferred to data processing system
200 for running by processor unit 204. Program code 218 and
computer readable media 220 form computer program prod-
uct 222 inthese examples. In one example, computer readable
media 220 may be computer readable storage media 224.
Computer readable storage media 224 may include, for
example, an optical or magnetic disk that is inserted or placed
into a drive or other device that is part of persistent storage
208 for transfer onto a storage device, such as a hard drive,
that is part of persistent storage 208. Computer readable
storage media 224 also may take the form of a persistent
storage, such as a hard drive, a thumb drive, or a flash
memory, that is connected to data processing system 200. In
some instances, computer readable storage media 224 may
not be removable from data processing system 200. In these
illustrative examples, computer readable storage media 224 is
also referred to as a computer readable storage device.

Alternatively, program code 218 may be transferred to data
processing system 200 using communications links, such as
wireless communications links, optical fiber cable, coaxial
cable, a wire, and/or any other suitable type of communica-
tions link. In other words, the communications link and/or the
connection may be physical or wireless in the illustrative
examples.

The different components illustrated for data processing
system 200 are not meant to provide architectural limitations
to the manner in which different embodiments may be imple-
mented. The different illustrative embodiments may be
implemented in a data processing system including compo-
nents in addition to, or in place of, those illustrated for data
processing system 200. Other components shown in FIG. 2
can be varied from the illustrative examples shown. The dif-
ferent embodiments may be implemented using any hardware

10

15

20

25

30

35

40

45

50

55

60

65

6

device or system capable of running program code. As one
example, the data processing system may include organic
components integrated with inorganic components and/or
may be comprised entirely of organic components excluding
a human being. For example, a storage device may be com-
prised of an organic semiconductor.

In another illustrative example, processor unit 204 may
take the form of a hardware unit that has circuits that are
manufactured or configured for a particular use. This type of
hardware may perform operations without needing program
code to be loaded into a memory from a storage device to be
configured to perform the operations.

As another example, a storage device in data processing
system 200 is any hardware apparatus that may store data.
Memory 206, persistent storage 208, and computer readable
media 220 are examples of storage devices in a tangible form.

In another example, a bus system may be used to imple-
ment communications fabric 202 and may be comprised of
one or more buses, such as a system bus or an input/output
bus. Of course, the bus system may be implemented using any
suitable type of architecture that provides for a transfer of data
between different components or devices attached to the bus
system. Additionally, a communications unit may include one
or more devices used to transmit and receive data, such as a
modem or a network adapter. Further, a memory may be, for
example, memory 206, or a cache, such as found in an inter-
face and memory controller hub that may be present in com-
munications fabric 202.

The different illustrative embodiments recognize and take
into account a number of different considerations. For
example, the different illustrative embodiments recognize
and take into account that one manner of validating data may
be to incorporate validation processes in web server applica-
tions. The different illustrative embodiments recognize and
take into account that another solution may involve having
another party, other than the application developer, provide
security for web server applications. This type of security
may take the form of web application firewalls, development
tools, intrusion protection systems, and/or other mechanisms.
The different illustrative embodiments recognize and take
into account that, although these types of security systems
may provide increased security, issues are still present with
the currently available systems.

For example, the different illustrative embodiments recog-
nize and take into account that intrusion protection devices
for web server applications often do not know the intended
use of the web server application. Additionally, the designers
of these intrusion protection devices often do not know the
parameters used in a request that is sent to a web server
application. For example, at a network layer, an intrusion
protection device cannot determine whether data passed to a
given parameter should be allowed to contain hypertext
markup language content.

Currently available intrusion protection devices may be
customized for particular applications. For example, a cus-
tomer may perform an evaluation of a web application and
submit information about the different applications. In other
examples, the vendor or the intrusion protection device may
analyze the web server application and provide a customized
solution for that particular application.

The different illustrative embodiments recognize and take
into account that, although these types of solutions may pro-
vide security for particular web server applications, these
types of solutions may be time consuming and expensive.
Additionally, web applications are often dynamic in nature.
Changes to the application code for a web application can be

US 9,300,677 B2

7

made over time. These changes may invalidate the custom
enforcement rules created for prior versions of the web appli-
cation.

Further, the different illustrative embodiments recognize
and take into account that it may be desirable to have a process
for validating data that can be applied to different applica-
tions. A process for validating data that is designed for one
application may not work for another application, because the
manner in which data is formatted or expected may be differ-
ent. For example, a process may be designed to recognize
specific parameter names. If another application uses differ-
ent parameter names, that process will not work correctly for
the other application.

Therefore, the different illustrative embodiments provide a
method and apparatus for validating data contained in a
request sent by a requestor to a server application. A computer
receives the request from the requestor before receipt of the
request by the server application. The computer identifies a
set of data validation rules to apply to the data in the request
based on a data format specification contained in the request
sent by the requestor. The computer determines whether the
data is valid based on the identified set of data validation
rules. The computer forwards the request to the server appli-
cation in response to the computer determining that the data is
valid based on the identified set of data validation rules.

With reference now to FIG. 3, an illustration of an intrusion
protection environment is depicted in accordance with an
illustrative embodiment. Intrusion protection environment
300 is an example of an environment that may be imple-
mented in network data processing system 100 in FIG. 1.

In this illustrative example, browser 302 executes on client
data processing system 304. Client data processing system
304 may be implemented using data processing system 200 in
FIG. 2. Client data processing system 304 may take a number
of different forms. For example, without limitation, client
data processing system 304 may be a desktop computer, a
laptop computer, a mobile phone, or some other type of data
processing system. In this illustrative example, user 306 may
enter data into browser 302. In particular, data 308 may be
entered into form 310 on webpage 312.

In these illustrative examples, data 308 entered in form 310
may be sent in request 314 to server application 316 running
on server computer 318 over network 320. Server application
316 is program code that is configured to process requests
from requestors. These requests may be for information or to
perform operations. These operations may include, for
example, a sales transaction, storing files, deleting files,
modifying files, and/or other suitable operations.

In these depicted examples, server application 316 takes
the form of web server application 322. Web server applica-
tion 322 is a server application that is configured to provide
access to websites. For example, web server application 322
may send web pages to client data processing system 304 and
receive requests from client data processing system 304.

In these illustrative examples, when data 308 is sent to
server application 316, intrusion protection device 324
receives request 314 with data 308 prior to server application
316 in server computer 318 receiving request 314. Intrusion
protection device 324 may be, for example, a firewall com-
puter, a network gateway computer, and/or some other suit-
able type of intrusion protection device. As a firewall, intru-
sion protection device 324 is interposed between client data
processing system 304 and server computer 318.

In these examples, request 314 may include other compo-
nents in addition to data 308, such as, for example, without
limitation, routing information, metadata, and/or other suit-
able types of information. Intrusion protection device 324

10

15

20

25

30

35

40

45

50

55

60

65

8

processes request 314 before determining whether to forward
request 314 with data 308 to web server application 322 for
further processing.

Inthese illustrative examples, data inspection program 326
runs on intrusion protection device 324. Data inspection pro-
gram 326 may be implemented in hardware, software, or a
combination of the two for intrusion protection device 324. In
other words, intrusion protection device 324 may be a hard-
ware device, such as a router, a server computer, or some other
type of hardware. Additionally, intrusion protection device
324 also may take the form of a software process running on
a data processing system. In some cases, intrusion protection
device 324 may be a combination of software and hardware
that implements data inspection program 326.

In these illustrative examples, intrusion protection device
324 identifies set of data validation rules 328 to apply to data
308 from rule database 330. Data inspection program 326
running on intrusion protection device 324 identifies set of
data validation rules 328 using data format specification 332
contained in request 314. Data format specification 332 may
take a number of different forms. For example, data format
specification 332 may be a particular format or part of a name
for a parameter.

As one illustrative example, a parameter for the first name
of a person has the name “alphabetic_8_first_name”. Data
format specification 332 for this parameter is “alphabetic_8”,
which is part of the name. In this illustrative example, data
inspection program 326 identifies set of data validation rules
328 using “alphabetic_8” and rule database 330. For
example, data inspection program 326 may compare “alpha-
betic” and “8” to rule database 330 to identify set of data
validation rules 328. In this example, set of data validation
rules 328 for this parameter specifies that the data value for
the first name of the person should be eight or fewer alpha-
betic characters.

As another example, the name of the parameter indicates a
type for the parameter and/or a use for the parameter. For
example, a parameter may have the name “date_reservation”.
In this example, data format specification 332 is the “date”
portion of this name and indicates that the parameter has a
date type. In some illustrative examples, data inspection pro-
gram 326 may identify set of data validation rules 328 from
rule database 330 that correspond to a data type. More spe-
cifically, data inspection program 326 correlates information
in rule database 330 to data format specification 332 to iden-
tify set of data validation rules 328.

In other illustrative examples, data format specification
332 may be, for example, metadata or other data included in
request 314 that identifies set of data validation rules 328 for
use in processing data 308. In these illustrative examples, data
inspection program 326 may apply set of data validation rules
328 to data 308 for different types of applications.

Inthese illustrative examples, programmer 334 determines
what data format specification 332 will be for a particular
parameter. In some situations, an unauthorized person, such
as a hacker, for example, may try to change data format
specification 332. If data inspection program 326 receives
request 314 with an altered data format specification, data
inspection program 326 does not recognize the altered data
format specification and does not forward request 314 to
server application 316. Further, data inspection program 326
is unable to correlate information in rule database 330 to an
altered data format specification. In this manner, when data
format specification 332 is altered from a correct data format
specification for a parameter, data inspection program 326 is
unable to use data format specification 332 to identify set of
data validation rules 328.

US 9,300,677 B2

9

In response to identifying set of data validation rules 328,
data inspection program 326 applies set of data validation
rules 328 to data 308 to determine whether data 308 in request
314 should be forwarded to server application 316. In other
words, data inspection program 326 determines whether data
308 is valid based on set of data validation rules 328. If, after
applying set of data validation rules 328, data inspection
program 326 determines that data 308 is valid based on set of
data validation rules 328; data inspection program 326 then
forwards data 308 to server application 316. If data inspection
program 326 determines that data 308 is not valid based on set
of data validation rules 328, data inspection program 326
blocks data 308 from being forwarded to server application
316. Additionally, data inspection program 326 may perform
a number of other operations. For example, data inspection
program 326 may generate an entry in a log regarding the
failure of data 308 to meet set of data validation rules 328,
generate an alert, and/or perform other suitable types of
operations.

In an alternate embodiment, development of server appli-
cation 316 may include the use of data inspection program
326 in intrusion protection device 324. For example, data
inspection program 326 may identify set of data validation
rules 328 from rule database 330 as a set of data validation
rules that is desirable for use in writing server application
316. As programmer 334 writes server application 316, intru-
sion protection device 324 does not pass to server application
316 requests with nonconforming data format from other
applications used by browser 302 that do not meet set of data
validation rules 328. As a result, when data 308 does notreach
server application 316 as expected, programmer 334 may
review or debug server application 316 such that the genera-
tion of data 308 generated by forms, scripts, applets, or other
code controlled by server application 316 meets set of data
validation rules 328.

Thus, the different illustrative embodiments provide a
capability to have increased intrusion protection with respect
to data being sent to a server application. The different illus-
trative embodiments include a data format specification
within the data. The data format specification may be
included as part of the data or associated with the data. In the
different examples, the data format specification is used to
identify rules for use in determining whether the data should
be forwarded to the server application.

In this manner, data inspection program 326 in intrusion
protection device 324 does not have to guess or perform an
analysis on the data to identify data validation rules to apply
to the data. Further, in this manner, data inspection program
326 does not have to be written for a particular application.

Instead, the different illustrative embodiments provide
flexibility to process data 308 for many different types of
applications that may have data in different types of formats
or with different naming conventions for parameters. Data
format specification 332 provides the flexibility to identify set
of data validation rules 328 based on the data being sent.

The illustration of intrusion protection environment 300 in
FIG. 3 is not meant to imply physical or architectural limita-
tions to the manner in which different illustrative embodi-
ments may be implemented. Other components in addition to
and/or in place of the ones illustrated may be used. Some
components may be unnecessary in some illustrative embodi-
ments. Also, the blocks are presented to illustrate some func-
tional components. One or more of these blocks may be
combined and/or divided into different blocks when imple-
mented in different illustrative embodiments.

For example, in some illustrative examples, intrusion pro-
tection device 324 may be located in server computer 318,

25

30

35

40

45

50

55

60

65

10

rather than being a separate hardware component. Further,
additional server applications in addition to server applica-
tion 316 may receive data that is processed by data inspection
program 326 in intrusion protection device 324.

With reference now to FIG. 4, an illustration of another
implementation for an intrusion protection environment is
depicted in accordance with an illustrative embodiment. In
this example, intrusion protection environment 400 may be
implemented using network data processing system 100 in
FIG. 1. This configuration of intrusion protection environ-
ment 400 may also be used for developing server applications
in addition to protecting server applications from intrusions.

In this illustrative example, intrusion protection environ-
ment 400 includes server computer 402 and client data pro-
cessing system 404. Client data processing system 404 has
browser 406, which may send request 408 to hypertext pro-
tocol daemon 410. Request 408 is a hypertext protocol
request in this example.

Hypertext protocol daemon 410 is a process that runs on
server computer 402 in these examples. Hypertext protocol
daemon 410 is configured to receive hypertext protocol
requests, such as request 408. In this example, hypertext
protocol daemon 410 calls request handler 412 to process
request 408.

Inthese illustrative examples, request handler 412 includes
data inspection program 414. Data inspection program 414
identifies set of data validation rules 416 from rule database
417 for use in processing data 418 in request 408. If data
inspection program 414 determines that data 418 should be
sent to server application 420 running on server computer
402, request handler 412 sends data 418 to server application
420. If data inspection program 414 determines that data 418
is not valid, then request handler 412 does not send data 418
to server application 420.

With reference now to FIG. 5, an illustration of a request
with data is depicted in accordance with an illustrative
embodiment. In this illustrative example, data 418 in request
408 from FIG. 4 comprises method 500, universal resource
identifier 502, parameter 504, and value 506. Method 500, in
this example, identifies a method to be initiated by request
handler 412 in FIG. 4. As depicted, method 500 is a post
request. The request handler uses method 500 when a client
data processing system, such as client data processing system
404, needs to send data to a server application, such as server
application 420 in FIG. 4.

In this illustrative example, universal resource identifier
502 identifies application code 508 within the server applica-
tion to process request 408. Parameter 504 is the parameter
used by the application code, and value 506 is the value for
parameter 504.

In these illustrative examples, a data inspection program,
such as data inspection program 414 in FIG. 4, applies a set of
data validation rules, such as set of data validation rules 416
identified using request 408, to value 506 to determine
whether value 506 is a valid value. For example, value 506
may take different forms. For example, without limitation,
value 506 may be a character, a string, an alphanumeric
string, an integer, or some other type of value.

In these depicted examples, parameter 504 has name 510.
Name 510 indicates type 512 of data 418 for parameter 504.
In particular, name 510 indicates type 512 of value 506 of
parameter 504. Further, name 510 may indicate different
types of information for value 506. This information may
include, for example, a range of values for value 506 for
parameter 504, a length for value 506, a character type for
value 506, and/or other suitable information. In this manner,
name 510 for parameter 504 includes the data format speci-

US 9,300,677 B2

11

fication used by the data inspection program to identify the set
of data validation rules to apply to value 506.

In one illustrative example, name 510 for parameter 504
may be “int_8_recordidentifier”. In this example, the data
inspection program uses name 510 to identify the set of data
validation rules to apply to value 506 for parameter 504. In
particular, the data inspection program uses name 510 to
determine that value 506 is for a record identifier, should be a
numeric integer, and should have a length that is about eight
bytes or less.

In other illustrative examples, metadata 514 may be present
within data 418. Metadata 514 may identify the set of data
validation rules, include the set of data validation rules, and/
or provide other suitable hints to identify the appropriate set
of data validation rules to apply to value 506. As one illustra-
tive example, metadata 514 may include a range of values for
value 506. Further, metadata 514 may include a header iden-
tifying type 512 of value 506.

With reference now to FIG. 6, an illustration of a table of
names for a parameter and corresponding types of values for
the parameter is depicted in accordance with an illustrative
embodiment. In this illustrative example, table 600 includes
names 602, types 604, and rules 606. Names 602 are
examples of implementations for name 510 in FIG. 5. Types
604 are examples of implementations for type 512 in FIG. 5.
Types 604 are for a type of parameter in this depicted
example. Rules 606 are examples of implementations for set
of data validation rules 416 in FIG. 4 that may be identified
using names 602.

As one illustrative example, name 608 is “date_mm/dd/
yy”. Name 608 indicates that the value for the parameter has
adate type. Further, name 608 indicates that the value must be
a date having the format mm/dd/yy.

With reference now to FIG. 7, an illustration of a flowchart
of a process for processing data sent from a requestor is
depicted in accordance with an illustrative embodiment. The
process illustrated in FIG. 7 may be implemented in intrusion
protection environment 300 in FIG. 3.

The process begins by data inspection program 326 in
intrusion protection environment 300 receiving request 314
from browser 302 before receipt of request 314 by server
application 316 (step 700). Request 314 is for server applica-
tion 316. Browser 302 runs on client data processing system
304 in this example. Server application 316 runs on server
computer 318. In these examples, data inspection program
326 runs on intrusion protection device 324. Intrusion pro-
tection device 324 is in communication with client data pro-
cessing system 304 and server computer 318.

Data inspection program 326 identifies set of data valida-
tionrules 328 to apply to data 308 in request 314 based on data
format specification 332 contained in request 314 sent by
browser 302 (step 702). In step 702, data format specification
332 may be the name or part of the name of a parameter for
data 308. The name may indicate valid types of characters for
data 308, a type of data for data 308, a set of data validation
rules to apply to data 308, and/or other suitable information.

Data inspection program 326 then determines whether data
308 is valid based on the identified set of data validation rules
328 (step 704). For example, the rules can specify a length of
data, a type of data, and/or other types of rules. The type of
data may include, for example, without limitation, alphabetic
characters, numeric characters, symbols, and/or other suit-
abletypes of characters. If data inspection program 326 deter-
mines that data 308 is not valid based on set of data validation
rules 328, data inspection program 326 blocks data 308 from
being forwarded to server application 316 (step 706), with the
process terminating thereafter.

10

15

20

25

30

35

40

45

50

55

60

65

12

With reference again to step 704, if data inspection pro-
gram 326 determines that data 308 is valid based on set of data
validation rules 328, data inspection program 326 forwards
data 308 to server application 316 (step 708), with the process
terminating thereafter.

With reference now to FIG. 8, an illustration of a flowchart
of a process for processing data in a request is depicted in
accordance with an illustrative embodiment. The process
illustrated in FIG. 8 may be implemented in intrusion protec-
tion environment 400 in FIG. 4.

The process begins by hypertext protocol daemon 410
receiving request 408 containing data 418 (step 800). Request
408 may be received from, for example, browser 406 in FIG.
4. In this illustrative example, at least a portion of data 418 is
data that may have been entered into a form in browser 406.
Further, data 418 includes a value for a parameter. Data 418
also includes the name of the parameter.

Hypertext protocol daemon 410 sends request 408 to
request handler 412 (step 802). Request handler 412 uses data
inspection program 414 to inspect data 418 (step 804). Data
inspection program 414 uses the name of the parameter to
identify set of data validation rules 416 to be applied to the
value for the parameter (step 806). Thereafter, data inspection
program 414 uses set of data validation rules 416 identified to
determine whether the value for the parameter in data 418 is
valid (step 808).

In this illustrative example, if the value for the parameter in
data 418 does not meet the set of data validation rules iden-
tified, the value for the parameter in data 418 is not valid. The
request may not be forwarded if the value for the parameter
included in data 418 is not valid.

With reference again to step 808, if data inspection pro-
gram 414 determines that the value for the parameter in data
418 is not valid, the program blocks data 418 from being
forwarded to server application 420 (step 809). Thereafter,
data inspection program 414 generates an alert (step 810),
with the process terminating thereafter. In some illustrative
examples, this alert may be sent back to browser 406 for
display to the user, the server operator, security operations
personnel, and/or any other interested party.

With reference again to step 808, if data inspection pro-
gram 414 determines that the value for the parameter in data
418 is valid, the process forwards request 408 with data 418 to
server application 420 (step 812), with the process terminat-
ing thereafter.

The flowcharts and block diagrams in the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowcharts
or block diagrams may represent a module, segment, or por-
tion of code, which comprises one or more executable
instructions for implementing the specified logical func-
tion(s). It should also be noted that, in some alternative imple-
mentations, the functions noted in the block may occur out of
the order noted in the figures. For example, two blocks shown
in succession may, in fact, be performed substantially con-
currently, or the blocks may sometimes be performed in the
reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams
and/or flowcharts, and combinations of blocks in the block
diagrams and/or flowcharts, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

Thus, the different illustrative embodiments provide a
method and apparatus for processing data sent by a requestor

US 9,300,677 B2

13

to a web server application. In one illustrative example, a
CPU receives data from a requestor for a server application.
The CPU identifies a set of data validation rules to apply to the
data based on a data format specification in the data sent by
the requestor. The CPU determines whether to forward the
data to the server application using the data and the set of data
validation rules identified to apply to the data. The CPU
forwards the data to the server application in response to a
determination that the data should be forwarded to the server
application.

The terminology used herein is for the purpose of describ-
ing particular embodiments only, and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”,“an”, and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

The description of the present invention has been presented
for purposes of illustration and description but is not intended
to be exhaustive or limited to the invention in the form dis-
closed. Many modifications and variations will be apparent to
those of ordinary skill in the art without departing from the
scope and spirit of the invention. The embodiment was cho-
sen and described in order to best explain the principles of the
invention and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

The invention can take the form of an entirely hardware
embodiment, an entirely software embodiment, or an
embodiment containing both hardware and software ele-
ments. In a preferred embodiment, the invention is imple-
mented in software, which includes, but is not limited to,
firmware, resident software, microcode, etc.

Furthermore, the invention can take the form of a computer
program product accessible from a computer readable
medium providing program code for use by, or in connection
with, a computer or any instruction system.

The computer readable storage device can be an electronic,
magnetic, optical, electromagnetic, infrared, or semiconduc-
tor system (or apparatus or device). Examples of a computer
readable medium include a semiconductor or solid state
memory, magnetic tape, a removable computer diskette, a
random access memory (RAM), aread-only memory (ROM),
a rigid magnetic disk, and an optical disk. Current examples
of optical disks include compact disk-read only memory
(CD-ROM), compact disk-read/write (CD-R/W), and DVD.

A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual running of the program code, bulk
storage, and cache memories, which provide temporary stor-
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during running of the code.

Input/output or I/O devices (including, but not limited to,
keyboards, displays, pointing devices, etc.) can be coupled to
the system either directly or through intervening I/O control-
lers.

Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems, remote printers, or storage devices

15

20

25

30

35

40

45

50

55

60

65

14

through intervening networks. Modems, cable modem, and
Ethernet cards are just a few of the currently available types of
network adapters.

What is claimed is:

1. A method for validating data contained in a request sent
by a requestor to a server application, the method comprising
the steps of:

receiving, by one or more processors, the request from the

requestor before processing of the request by the server
application;

identifying, by one or more processors, a set of data vali-

dation rules to apply to the data in the request based on
a data format specification contained in the request sent
by the requestor;

determining, by one or more processors, that the data is

valid based on the identified set of data validation rules,
and in response, forwarding the request to the server
application for processing.

2. The method of claim 1, further comprising:

determining, by one or more processors, that the data is not

valid based on the identified set of data validation rules,
and in response, one or more processors blocking the
request from being forwarded to the server application.

3. The method of claim 1, wherein the data format speci-
fication is part of a name for a parameter for the data and
specifies valid types of characters for the data.

4. The method of claim 1, wherein the data format speci-
fication is part of a name for a parameter for the data and
indicates a type of data for the parameter.

5. The method of claim 1, further comprising:

correlating, by one or more processors, the data format

specification to the identified set of data validation rules
to apply to the data.

6. The method of claim 1, wherein one or more processors
act as a firewall.

7. The method of claim 6, wherein the firewall is interposed
between a requesting computer used by the requestor and a
server in which the server application is installed.

8. A computer system for validating data contained in a
request sent by a requestor to a server application, the com-
puter system comprising:

one or more processors, one or more computer-readable

tangible storage devices, and one or more computer-
readable memories;

first program instructions to receive the request from the

requestor before processing of the request by the server
application;

second program instructions to identify a set of data vali-

dation rules to apply to the data in the request based on
a data format specification contained in the request sent
by the requestor;

third program instructions to determine that the data is

valid based on the identified set of data validation rules,
and in response, forwarding the request to the server
application for processing, wherein the first, the second,
and the third program instructions are stored on at least
one of the one or more computer-readable tangible stor-
age devices for execution via at least one of the one or
more processors via at least one of the computer-read-
able memories.

9. The computer system of claim 8 further comprising:

fourth program instructions to block the request from being

forwarded to the server application in response to a
determination that the data is not valid based on the
identified set of data validation rules, wherein the fourth
program instructions are stored on at least one of the one
or more computer-readable tangible storage devices for

US 9,300,677 B2

15

execution via at least one of the one or more processors
via at least one of the computer-readable memories.

10. The computer system of claim 8, wherein the data
format specification is part of a name for a parameter for the
data and specifies valid types of characters for the data.

11. The computer system of claim 8, wherein the data
format specification is part of a name for a parameter for the
data and indicates a type of data for the parameter.

12. The computer system of claim 8 further comprising:

fourth program instructions to correlate the data format

specification to the identified set of data validation rules
to apply to the data, wherein the fourth program instruc-
tions are stored on at least one of the one or more com-
puter-readable tangible storage devices for execution via
at least one of the one or more processors via at least one
of the computer-readable memories.

13. The computer system of claim 8, wherein the one or
more processors is located in a firewall.

14. The computer system of claim 13, wherein the firewall
is interposed between a requesting computer used by the
requestor and a server in which the server application is
installed.

15. A computer program product for validating data con-
tained in a request sent by a requestor to a server application,
the computer program product comprising:

one or more computer-readable tangible storage devices

and program instructions stored on at least one of the
computer-readable tangible storage devices the program
instructions comprising:

program instructions to receive the request from the

requestor before processing of the request by the server
application;

10

15

20

25

30

16

program instructions to identify a set of data validation
rules to apply to the data in the request based on a data
format specification contained in the request sent by the
requestor;

program instructions to determine that the data is valid

based on the identified set of data validation rules, and in
response, forwarding the request to the server applica-
tion for processing.

16. The computer program product of claim 15 further
comprising program instructions, stored on at least one of the
one or more computer-readable tangible storage devices, to
block the request from being forwarded to the server appli-
cation in response to a determination that the data is not valid
based on the identified set of data validation rules.

17. The computer program product of claim 15, wherein
the data format specification is part of a name for a parameter
for the data and specifies valid types of characters for the data.

18. The computer program product of claim 15, wherein
the data format specification is part of a name for a parameter
for the data and indicates a type of data for the parameter.

19. The computer program product of claim 15 further
comprising program instructions, stored on at least one of the
one or more computer-readable tangible storage devices, to
correlate the data format specification to the identified set of
data validation rules to apply to the data.

20. The computer program product of claim 15, wherein
one or more processors located in a firewall execute the pro-
gram instructions stored on at least one of the computer-
readable tangible storage devices, and wherein the firewall is
interposed between a requesting computer used by the
requestor and a server in which the server application is
installed.

